This article was downloaded by: On: 23 January 2011 Access details: Access Details: Free Access Publisher Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Journal of Liquid Chromatography & Related Technologies

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713597273

Lipophilicity Determination using Both TLC and Calculations

H. Kalász^a; B. Benkő^b; Zs. Gulyás^c; K. Tekes^d ^a Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary ^b Gedeon Richter Pharmaceutical Works, Budapest, Hungary ^c ComGrid Ltd., Budapest, Hungary ^d Department of Pharmacodynamics, Semmelweis University, Budapest, Hungary

To cite this Article Kalász, H., Benkő, B., Gulyás, Zs. and Tekes, K.(2009) 'Lipophilicity Determination using Both TLC and Calculations', Journal of Liquid Chromatography & Related Technologies, 32: 9, 1342 – 1358 To link to this Article: DOI: 10.1080/10826070902854466 URL: http://dx.doi.org/10.1080/10826070902854466

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Journal of Liquid Chromatography & Related Technologies[®], 32: 1342–1358, 2009 Copyright © Taylor & Francis Group, LLC ISSN: 1082-6076 print/1520-572X online DOI: 10.1080/10826070902854466

Lipophilicity Determination using Both TLC and Calculations

H. Kalász,¹ B. Benkő,² Zs. Gulyás,³ and K. Tekes⁴

 ¹Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
²Gedeon Richter Pharmaceutical Works, Budapest, Hungary
³ComGrid Ltd., Budapest, Hungary
⁴Department of Pharmacodynamics, Semmelweis University, Budapest, Hungary

Abstract: Lipophilicity of four different groups of organic compounds was both measured and calculated. Measurements were done using reversed-phase thinlayer chromatography and lipophilicity was considered as the $R_{M,0}$ values of their R_M versus the percentage of the organic modifier. Calculation was performed using a recent version of the Pallas program of CompuDrug, Inc.

Between $R_{M,0}$ and logP, a surprising deviation was found in case of cyasterone having an extra ring. Other ecdysteroids gave a well arranged group determining a straight line.

RP-TLC-measured lipophilicity values of about 30 phenylalkyl compounds also showed good correlation with those of the calculated logP values. Deviations were found in the case of J-508 (having an indol ring instead of a phenyl ring). Positive differences were found in cases of para-halogen substituted compounds, where the calculated values were higher than those predicted by the corresponding straight line of the experimentally found $R_{M,0}$ versus calculated logP.

 $R_{M,0}$ values versus calculated logP series of dermorphine derivatives were also gathered in a cluster. The consequence of consistent substitution gave a larger impetus to lipophilicity experimentally than by calculation.

Correspondence: H. Kalász, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Nagyvárad tér 4, Hungary. E-mail: huba.kalasz@gmail.com

Lipophilicity Determination using Both TLC and Calculations

Experimental determination of $R_{M,0}$ values of pyridinium aldoximes was not possible using a reversed-phase stationary phase. Calculated hydrophilicity did not correlate with logP.

Keywords: Lipophilicity, Pallas program, Reversed-phased chromatography, Thin-layer chromatography

INTRODUCTION

Lipophilicity plays a crucial role in the fate of xenobiotics in the body. Lipophilic/hydrophilic character essentially influences the processes of absorption, distribution, metabolism, and excretion, with special emphasis on penetration of xenobiotics through the blood-brain-barrier, blood-placenta-barrier, and the blood-testis-barrier. Only lipophilic compounds have unlimited access to the brain; other, hydrophilic substances, have only limited penetration,^[1] if any. Even this limited penetration is due to carriers such as special transporters of endogenous compounds.

The lipophilic character of any drug may essentially influence their drugreceptor interactions, as was stated in the classical works of Overton,^[2,3] Meyer,^[4,5] Baum,^[6] Ferguson,^[7] Collander,^[8,9] Zahradnik,^[10] and Hemker.^[11]

Hansch et al.^[12,13] introduced the concept of measurable lipophilicity thereby opening the way for the determination and calculation of numerical values. For a long time, the shaken flask procedure was considered the standard reliable reference procedure for logP, i.e., the octanol/water water partition coefficient. However, the shaken flask procedure was a time- and substance-consuming method, and logP was affected by the purity and stability of substances. Concentration dependence of mass balance^[14] posed a further problem.

High-performance liquid chromatography was applied to determine lipophilicity by Nahum and Horváth.^[15] Retention characteristics of a given compound were approximated to a 0% organic modifier, and this parameter was accepted as a mirror of the lipophilicity of the sample compound. Valkó et al. determined lipophilicity by various reverse-phase and other HPLC columns and evaluated its possible relationship to molecular behaviour.^[16]

Thin-layer chromatography had various advantages over the column techniques. The introduction of R_M values by Boyce and Milborrow^[17] made it possible to apply TLC for lipophilicity determination by using a liquid paraffin impregnated silica gel matrix. Biagi et al.^[14,18,19] widely used reversed phase thin-layer chromatography for the experimental determination of lipophilicity.

This paper gives an account of how the data of reversed-phase thin-layer chromatography can be completed using computer-based (*in silico*) calculations.

EXPERIMENTAL

Lipophilicity determination was performed using the planar chromatographic techniques in our earlier publications. Chromatographic results were obtained using TLC silica gel impregnated with liquid paraffin when migrations of various ecdysteroids^[20] and phenylalkylamines^[21] were determined. Data of R_M values on dermorphine related oligopeptides were extracted from the report of Biagi et al.,^[14] and their experiments were done on Silica gel G layers impregnated with Silicone DC 200 (350cS). Hydrophilicity indices were determined for pyridinium aldoximes as they did not show any migration on paraffin-coated silica layers.^[22] JATE compounds were supplied by Chinoin Chemical Works, Budapest (present name is Chinoin-Sanofi Ltd. Budapest, Hungary), and K-compounds were kindly given by Dr. Kamil Kuca (University of Defence, Hradec Kralove. Czech Republik), while ecdysteroids were isolated by Prof. Dr. Mária Báthori (Department of Pharmacognosy, University of Szeged, Hungary). Details on isolation and the most important physico-chemical characteristics of ecdysteroids were detailed in her earlier publications.^[23,24,25]

Calculation of logP and total polar surface area (TPSA) values were done using the Prolog Program of Pallas software of CompuDrug International, Inc. (Sedona, AZ, USA).^[26,27]

RESULTS

Lipophilicities of various drugs and drug candidates were determined using both thin-layer chromatography and *in silico* (computer assisted calculation) methods.

 $R_{M,0}$ and logP values of ecdysteroids show a wide variety. Cyasterone showed an extremely high experimental $R_{M,0}$ value as a consequence of its extra ring at the end of the side chain. Positive deviation in $R_{M,0}$ value was shown in the case of 2-deoxy compounds, indicating their more powerful experimental influence than expected by calculation. The number of hydroxyl groups on the steroid structure was determined both experimentally and by calculation (Table 1 and Figure 1).

Phenylalkylamines were subjected to reversed-phase TLC using RP-TLC plates. Determined $R_{M,0}$ values mirrored well the distributional characteristics of the compounds (Table 2). The experimentally determined values showed similarities to those of the calculated ones; however, experimental $R_{M,0}$ versus calculated logP of JATE-508 gave an odd location (Figure 2a) as J-508 has an indol ring instead of a phenolic one. Deviation from the straight line was found in another few cases only, caused by the essential structural differences between these compounds

Lipophilicity Determination using Both TLC and Calculations

Table	1.	Total	polar	surface	area,	chemica	1 st	tructur	e, de	termined	$R_{M,0}$	(\mathbf{R})	М
values	we	re det	ermine	d, then	appro	oximated	to	R _{M,0})	and	calculated	d logI	Ps of	of
certair	1 sel	ected	ecdyste	eroids									

Compound	TPSA (Å ²)	Chemical structure	$R_{M,0}$ (det. calc. 0%)	logP (calc.)
Cyasterone	144.52	$H_{3C} \rightarrow H_{3C} \rightarrow H$	6.77	1.38
22-Deoxy-20- hydroxyecdysone	118.22	HO HOC OH HOC OH HOC OH HOC OH OH HOC OH	2.35	2.14
2-Deoxyecdysone	97.99	$H_{3C} \xrightarrow{H_{3C}} H_{3C} \xrightarrow{H_{3C}} H_{3$	2.10	3.29
Vitocosterone E	144.52	$H_{3}C \xrightarrow{OH} H_{3}C \xrightarrow{CH_{3}} H_{3}C \xrightarrow{CH_{3}} H_{3}C \xrightarrow{CH_{3}} H_{3}C \xrightarrow{OH} H_{3}C \xrightarrow{OH} H_{3}C \xrightarrow{OH} CH_{3}$	1.97	2.29
Makisterone A	138.45		1.77	2.01
2-Deoxy- 20-hydroxyecdysone	118.22	H ₃ C OH H ₃ C OH H ₃ C OH H ₃ C OH	1.74	2.40
20-Hydroxyecdysone- 22-acetate	144.52	$H_{3C} \xrightarrow{H_{3C}} H_{3C} \xrightarrow{H_{3C}} H_{3$	1.45	2.29

Table 1. Continued

Compound	TPSA (Å ²)	Chemical structure	R _{M,0} (det. calc. 0%)	logP (calc.)
Rubrosterone	94.83		0.80	0.96
Polypodine B	158.68	$H_{3C} \xrightarrow{H_{3C} OH} H_{3C} OH$	0.70	1.48
20-Hydroxyecdysone	138.45	Ho H ₃ C OH H ₃ C OH	0.65	1.92
Integristerone	158.68	H ₃ C OH H ₃ C OH	0.44	1.52
3,5 3,0 -			•	
2,5 - C. D: 2,0 - 1,5 -	•	• •	•	
1,0	•	, , ,		
0,0	0,5	1,0 1,5 2 R _{M.0}	2,0 2,	5

Figure 1. $R_{M,0}$ versus logP relationships of ecdysteroids (without giving the data point for cyasterone).

Table 2. Total polar surface area, chemical structure, determined $R_{M,0}$ (R_M values were determined, then approximated to $R_{M,0}$) and calculated logPs of some phenylalkylamines

Compound	TPSA (Å ²)	Chemical structure	R _{M,0} (det. calc. 0%)	logP (calc.)
Benzylamine	26.02	NH ₂	1.089	0.56
JATE-501	3.24	CH ₃ CH ₃ CH ₃ CH	3.215	3.29
JATE-502	3.24	H ₃ C-CH ₃ CH ₃ CH ₃ CH	3.400	3.56
JATE-504	3.24	CH ₃ CH	3.400	3.86
JATE-505	3.24	H ₃ C CH ₃ CH	3.140	3.89
JATE-508	3.24	H ₃ C CH ₃ CH	1.914	6.07
JATE-510	3.24		2.461	4.25
JATE-511	3.24	H ₃ C CH ₃ CH	2.761	3.49
JATE-513	3.24	H ₃ C CH ₃ CH	3.675	4.39
JATE-514	3.24	H ₃ C CH ₃ CH	2.804	3.67

Table 2. Continued

Compound	TPSA (Å ²)	Chemical structure	R _{M,0} (det. calc. 0%)	logP (calc.)
JATE-515	3.24	S-CH ₃ CH3-CH	2.253	2.26
TZ-81/2	49.06	0 ₂ N-CH ₃ CH ₃ C-CH ₃ CH ₃	2.308	2.46
TZ-650	3.24	⟨N ^{CH} ₃ ^{CH}	2.119	2.40
TZ-996	3.24	H ₃ C CH ₃ C CH ₃ CH	2.404	3.08
TZ-1062/c	3.24	H ₃ C CH ₃ CH	2.445	3.29
V-111	12.03	Br	3.109	2.97
U-1520	3.24	H ₃ C CH ₃ C	2.857	3.76
nor-Pseudoephedrine	46.25		1.145	0.54
nor-Ephedrine	46.25		1.128	0.54
Ephedrine	32.26	H ₃ C CH ₃ NH OH	1.529	1.01

Compound	TPSA (Å ²)	Chemical structure	R _{M,0} (det. calc. 0%)	logP (calc.)
p-Hydroxy- methamphetamine	46.25	HO-CH3-NH	0.727	0.27
Amphetamine	26.02		2.106	1.55
Methamphetamine	12.03	H ₃ C CH ₃ NH	1.599	2.10
nor-Deprenyl	12.03	H ₃ C NH CH	1.594	2.45
Deprenyl	3.24	H ₃ C CH ₃ N CH	1.417	2.85
Propylamphetamine	12.03	H ₃ C NH CH ₃	2.330	3.11
p-Br-deprenyl	3.24	Br	2.694	3.59
p-Cl-deprenyl	3.24		2.519	3.55
p-F-deprenyl	3.24	F-CH3 F-CH3 CH	1.886	3.04
p-F-nordeprenyl	12.03	F	1.639	2.63

Table 2. Continued

Table 2. Continued

Compound	TPSA (Å ²)	Chemical structure	$R_{M,0}$ (det. calc. 0%)	logP (calc.)
p-F-methamphetamine	12.03	F	2.240	2.24
o-Methyldeprenyl	3.24	H ₃ C CH ₃ CH CH ₃ CH	2.353	3.13
p-Amino-deprenyl	29.26	$H_2N \longrightarrow H_3C \longrightarrow CH_3CH$	1.046	2.16

(Figure 2b). A group of some p-halogenated phenolic compounds showed a deviation from $R_{M,0}$ versus logP straight line.

Dermorphine related oligopeptides were also subjected to reversedphase TLC. Their $R_{M,0}$, total polar surface area and chemical structures are given in Table 3. All of them gave regular RP-TLC behaviour, and the comparison of their experimentally determined and *in silico* calculated values did not deviate from the straight line (Figure 3).

 $R_{M,0}$ of pyridinium aldoximes could not be directly determined. None of the standard compounds migrated along the reversed-phase surface, nor on RP-TLC silica of Merck, and on paraffin-impregnated TLC silica. As reversed-phase plates serve for the determination of lipophilicity, we focused our effort on the determination of the "reversed-reversed" characteristic, that is, hydrophilicity. Straight phase chromatography was done on naked silica, and the experimental determination resulted in hydrophilicity (Table 4). These hydrophilicity versus lipophilicity values indicated opposite trends (Figure 4, negative slope) as in the other reversed-phase $R_{M,0}$ versus logP lines, where positive slopes were obtained.

DISCUSSION

Lipophilicity of any organic compounds may be determined using a wide variety of methods. The overwhelming majority of these methods offered useful information; however, they are not able to handle charged compounds, such as quaternary amines.

Figure 2. (a) $R_{M,0}$ versus logP relations for phenylalkylamines (with the data for JATE-508), (b) $R_{M,0}$ versus logP relations for phenylalkylamines (without giving the data for JATE-508).

We decided on using thin-layer chromatography for the experimental determination of lipophilicity ($R_{M,0}$). Reversed-phase thin-layer chromatography was used to determine non-polar compounds, and straight-phase

Table 3. Total polar surface area, chemical structure, determined $R_{M,0}$ (R_M values were determined, then approximated to $R_{M,0}$) and calculated logPs of certain dermorphine derivatives

Compound	TPSA (Å ²)	Chemical structure	R _{M,0} (det. calc. 0%)	logP (calc.)
DeM No. 1	176.64	\bigcirc	1.22	-0.28
		$\overset{HO}{\overbrace{\begin{array}{c}} NH_2\\ 0\\ 0\\ CH_3\\ \end{array}}\overset{HO}{\overbrace{\begin{array}{c}} CH_2\\ 0\\ 0\\ 0\\ CH_3\\ \end{array}}\overset{O}{\underset{\begin{array}{c}} CH_2\\ 0\\ 0\\ 0\\ 0\\ 0\\ CH_2\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\$		
DeM No. 2	162.65	$\overset{HO}{\underset{O}{\overset{HO}{}{\underset{CH_3}{\overset{H}{}{\underset{O}{\overset{CH_2}{\overset{H}{}{\underset{CH_3}{\overset{H}{}{\underset{O}{\overset{CH_2}{\overset{H}{\overset{H}{\overset{O}{}{\underset{CH_3}{\overset{H}{\overset{O}{\overset{CH_2}{\overset{H}{\overset{O}{\overset{H}{\underset{O}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset$	1.38	0.30
DeM No. 3	153.86	$\overset{HO}{\underset{O}{\overset{HH_2}{\longrightarrow}}} \overset{H}{\underset{CH_3}{\overset{H}{\longrightarrow}}} \overset{O}{\underset{O}{\overset{CH_2}{\longrightarrow}}} \overset{O}{\underset{CH_3}{\overset{H}{\longrightarrow}}} \overset{O}{\underset{O}{\overset{H}{\longrightarrow}}} \overset{O}{\underset{CH_3}{\overset{O}{\longrightarrow}}} \overset{O}{\underset{CH_3}{\overset{O}{\overset{O}{\overset{O}{\leftarrow}}} \overset{O}{\underset{CH_3}{\overset{O}{\overset{O}{\leftarrow}}} \overset{O}{\underset{CH_3}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{$	1.95	0.86
DeM No. 4	162.65	$HO \xrightarrow{NH_2} H \xrightarrow{O} \xrightarrow{CH_2} H \xrightarrow{O} \xrightarrow{H} \xrightarrow{O} \xrightarrow{O} \xrightarrow{O} \xrightarrow{O} \xrightarrow{O} \xrightarrow{O} \xrightarrow{O} O$	2.24	1.48
DeM No. 5	162.65	$\overset{HO}{\underset{O}{\overset{NH_2}{\overset{H}{\underset{C}{\overset{H}{\underset{C}{\overset{H}{\underset{C}{\overset{O}{\underset{C}{\overset{C}{\underset{H}{\overset{O}{\underset{C}{\overset{C}{\underset{H}{\overset{O}{\underset{C}{\overset{C}{\underset{H}{\overset{O}{\underset{C}{\overset{C}{\underset{H}{\overset{O}{\underset{C}{\overset{C}{\underset{H}{\overset{O}{\underset{C}{\overset{C}{\underset{H}{\overset{O}{\underset{C}{\overset{C}{\underset{H}{\overset{O}{\underset{C}{\overset{O}{\underset{C}{\overset{O}{\underset{C}{\overset{O}{\underset{C}{\overset{O}{\underset{C}{\overset{O}{\underset{C}{\overset{O}{\underset{O}{\overset{O}{\underset{C}{\overset{O}{\underset{C}{\overset{O}{\underset{C}{\overset{O}{\underset{C}{\overset{O}{\underset{O}{\overset{O}{\underset{C}{\overset{O}{\underset{O}{\overset{O}{{O}{\overset{O}{{O}{\atopO}{\overset{O}{{O}}}{{O}{{O}{{O}{{O}{{O}{{O}{{O}{{O}{{O}}{{O}{{O}}{{O}{{O}}{{O}{{O}}{{O}{{O}{{O}{{O}}{{O}}{{O}{{O}}}}{{{O}{{O}}{{O}{{O}}}}}}}$	3.09	1.66
DeM No. 6	133.35	$\overset{HO}{\underset{O}{\overset{NH_2}{\overset{H}{\underset{C}{\overset{H}{\underset{C}{\overset{H}{\underset{C}{\overset{O}{\underset{C}{\overset{C}{\underset{H}{\overset{O}{\underset{C}{\overset{C}{\underset{H}{\overset{O}{\underset{C}{\overset{C}{\underset{H}{\overset{O}{\underset{C}{\overset{C}{\underset{H}{\overset{O}{\underset{C}{\overset{C}{\underset{H}{\overset{O}{\underset{C}{\overset{C}{\underset{H}{\overset{O}{\underset{C}{\overset{C}{\underset{H}{\overset{O}{\underset{C}{\overset{O}{\underset{C}{\overset{O}{\underset{C}{\overset{O}{\underset{C}{\overset{O}{\underset{C}{\overset{O}{\underset{C}{\overset{O}{\underset{O}{\overset{O}{\underset{C}{\overset{O}{\underset{O}{\overset{O}{\underset{C}{\overset{O}{\underset{O}{\overset{O}{{O}{\overset{O}{{O}{\atopO}{\overset{O}{{O}}}{{O}{{O}{{O}{{O}{{O}{{O}{{O}{{O}{{O}}{{O}{{O}}{{O}{{O}}{{O}{{O}}{{O}{{O}{{O}{{O}}{{O}}{{O}{{O}}}}{{{O}{{O}{{O}}{{O}}{{O}}{{O}}}}}}}$	3.07	2.22
DeM No. 7	124.76	$\overset{HO}{\longleftarrow} \overset{HH_2}{\longleftarrow} \overset{H}{\underset{O}{\overset{O}{\leftarrow}}} \overset{O}{\underset{CH_3}{\overset{H}{\leftarrow}}} \overset{H}{\underset{O}{\overset{O}{\leftarrow}}} \overset{O}{\underset{CH_3}{\overset{H}{\leftarrow}}} \overset{O}{\underset{CH_3}{\overset{O}{\leftarrow}}} \overset{O}{\underset{CH_3}{\overset{O}{\leftarrow}}}$	2.83	1.75
DeM No. 8	153.86	$\overset{HO}{\longleftarrow} \overset{HH_2}{\longleftarrow} \overset{O}{\underset{CH_3}{\overset{H}{\longrightarrow}}} \overset{O}{\underset{CH_3}{\overset{H}{\longrightarrow}}} \overset{CH_2}{\underset{CH_3}{\overset{H}{\longrightarrow}}} \overset{O}{\underset{CH_3}{\overset{H}{\longrightarrow}}} \overset{O}{\underset{CH_3}{\overset{O}{\longrightarrow}}}$	3.00	1.77

Compound	TPSA (Å ²)	Chemical structure	R _{M,0} (det. calc. 0%)	logP (calc.)
DeM No. 9	162.65	\bigcirc	2.30	1.48
		$\overset{HO}{\longrightarrow} \overset{NH_2}{\longrightarrow} \overset{H}{\underset{CH_3}{\overset{H}{\longrightarrow}}} \overset{O}{\underset{H}{\overset{H}{\longrightarrow}}} \overset{O}{\underset{H}{\overset{H}{\overset{H}{\longrightarrow}}} \overset{O}{\underset{H}{\overset{H}{\longrightarrow}}} \overset{O}{\underset{H}{\overset{H}{\overset{H}{\longrightarrow}}} \overset{O}{\underset{H}{\overset{H}{\overset{H}{\longrightarrow}}} \overset{O}{\underset{H}{\overset{H}{\overset{H}{\overset{H}{\longrightarrow}}} \overset{O}{\underset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{H$		
DeM No. 10	182.88	$\overset{HO}{\underset{O}{\overset{NH_2}{\overset{H}{\underset{O}{\overset{O}{\overset{O}{\underset{CH_3}}}}}}} \overset{O}{\underset{O}{\overset{O}{\underset{CH_3}}} \overset{O}{\underset{O}{\overset{O}{\underset{O}{\overset{H}{\underset{O}{\overset{O}{{O}{\underset{O}{\overset{O}{\underset{O}{\overset{O}{\underset{O}{\overset{O}{\underset{O}{\overset{O}{\underset{O}{\overset{O}{\underset{O}{\overset{O}{\underset{O}{\overset{O}{\underset{O}{\overset{O}{\underset{O}{\overset{O}{\underset{O}{\overset{O}{\underset{O}{\overset{O}{\underset{O}{\overset{O}{\underset{O}{\overset{O}{\underset{O}{\overset{O}{\underset{O}{\overset{O}{\atop\\{O}}{\underset{O}{\overset{O}{\underset{O}{\overset{O}{\atopO}}{\underset{O}{\overset{O}{{\bullet}}{\underset{O}{\overset{O}{\atopO}}{\underset{O}{\overset{O}{{\bullet}}{\underset{O}{\overset{O}{{\bullet}}{\atop\bullet}{\overset{O}{{\bullet}}{{\bullet}}{\underset{O}{{\bullet}}{{\bullet}}{{\bullet}}{{\bullet}}}}}}}}}}}}}}}}$	1.31	-0.61
DeM No. 11	171.88	$\overset{HO}{{\overset{HO}{{\overset{HO}{\overset{HO}{\overset{HO}{\overset{HO}{\overset{HO}{\overset{HO}{\overset{HO}{\overset{HO}{\overset{HO}{\overset{HO}{\overset{HO}{{\overset{HO}}{{}}}}{\overset{HO}{{\overset{HO}{{}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}$	1.52	0.02
DeM No. 12	182.88	$\overset{HO}{\leftarrow}\overset{HH_2}{\leftarrow}\overset{H}{\overset{H}}\overset{O}{\leftarrow}\overset{CH_2}{\overset{H}}\overset{H}{\overset{H}}\overset{O}{\overset{CH_2}}\overset{H}{\overset{H}}\overset{O}{\overset{CH_2}}\overset{H}{\overset{H}}\overset{O}{\overset{CH_3}}\overset{O}{\overset{CH_3}}\overset{OH}{\overset{H}}$	1.85	1.26
DeM No. 13	162.65	$\overset{HO}{\underset{O}{\overset{HO}{}{}}} \overset{HO}{\underset{CH_3}{}} \overset{HO}{\underset{O}{}} \overset{HO}{\underset{CH_3}{}} \overset{O}{\underset{O}{}} \overset{HO}{\underset{O}{}} \overset{HO}{\overset{HO}{}} \overset{HO}{\underset{O}{}} \overset{HO}{\underset{O}{}} \overset{HO}{} }{} \overset{HO}{} \overset{HO}{} \overset{HO}{} \overset{HO}{} \overset{HO}{} }{} \overset{HO}{} } }{} } }{} }{} }{}}$	3.73	2.32
DeM No. 14	133.55	$\overset{HO}{\underset{O}{}}\overset{HO}{\underset{CH_3}{}}\overset{HO}{\underset{H}{}}\overset{H}{\underset{O}{}}\overset{H}{\underset{CH_3}{}}\overset{O}{\underset{H}{}}\overset{H}{\underset{O}{}}\overset{O}{\underset{H}{}}\overset{H}{\underset{O}{}}\overset{O}{\underset{H}{}}\overset{H}{\underset{O}{}}\overset{H}{\underset{H}{}}\overset{O}{\underset{H}{}}\overset{H}{\underset{O}{}}\overset{H}{\underset{H}{}}\overset{O}{\underset{H}{}}\overset{H}{\underset{O}{}}\overset{H}{\underset{H}{}}\overset{O}{\underset{H}{}}\overset{H}{\underset{O}{}}\overset{H}{\underset{H}{}}\overset{O}{\underset{H}{}}\overset{H}{\underset{O}{}}\overset{H}{\underset{H}{}}\overset{O}{\underset{H}{}}\overset{H}{\underset{H}{}}\overset{O}{\underset{H}{}}\overset{H}{\underset{H}{}}\overset{O}{\underset{H}{}}\overset{H}{\underset{H}{}}\overset{O}{\underset{H}{}}\overset{H}{\underset{H}{}}\overset{O}{\underset{H}{}}\overset{H}{\underset{H}{}}\overset{O}{\underset{H}{}}\overset{H}{\underset{H}{}}\overset{O}{\underset{H}{}}\overset{H}{\underset{H}{}}\overset{O}{\underset{H}{}}\overset{H}{\underset{H}{}}\overset{O}{\underset{H}{}}\overset{H}{\underset{H}{}}\overset{O}{\underset{H}{}}\overset{H}{\underset{H}{}}\overset{O}{\underset{H}{}}\overset{H}{\underset{H}{}}\overset{O}{\underset{H}{}}\overset{H}{\underset{H}{}}\overset{O}{\underset{H}{}}\overset{H}{\underset{H}{}}\overset{O}{\underset{H}{}}\overset{H}{\underset{H}{}}\overset{O}{\underset{H}{}}\overset{H}{\underset{H}{}}\overset{O}{\underset{H}{}}\overset{H}{\underset{H}{}}\overset{O}{\underset{H}{}}\overset{H}{\underset{H}{}}\overset{H}{\underset{H}{}}\overset{H}{\underset{H}{}}\overset{H}{\underset{H}{}}\overset{H}{\underset{H}{}}\overset{H}{\underset{H}{}}\overset{H}{\underset{H}{}}\overset{H}{\underset{H}{}}\overset{H}{\underset{H}{}}\overset{H}{\underset{H}{\overset{H}{\overset$	4.02	2.42
DeM No. 15	170.85	$\overset{HO}{\underset{O}{\overset{NH_2}{\overset{H}{\underset{H}}{\overset{H}}{\underset{H}}{\overset{H}{\underset{H}}{\overset{H}{\underset{H}}{\overset{H}{\underset{H}}{\overset{H}}{\underset{H}}{\overset{H}{\underset{H}}{\overset{H}}{\underset{H}}{\overset{H}}{\underset{H}}{\overset{H}{\underset{H}}{\overset{H}}{\underset{H}}{\overset{H}{\underset{H}}{\overset{H}}{\underset{H}}{\overset{H}}{\underset{H}}{\overset{H}}{\underset{H}}{\overset{H}}{\underset{H}}{\overset{H}}{\underset{H}}{\overset{H}}{\underset{H}}{\overset{H}}{\underset{H}}{\overset{H}}{\underset{H}}{\overset{H}}{\underset{H}}{\overset{H}}{\underset{H}}{\overset{H}}{\underset{H}}{\overset{H}}{\underset{H}}{\overset{H}}{\underset{H}}{\underset{H}}{\overset{H}}{\underset{H}}{\underset{H}}{\overset{H}}{\underset{H}}}{\overset{H}}{\underset{H}}{\underset{H}}}{\overset{H}}{\underset{H}}{\underset{H}}{\overset{H}}{\underset{H}}{\underset{H}}}{\overset{H}}{\underset{H}}{\underset{H}}{\underset{H}}}{\overset{H}}{\underset{H}}{\underset{H}}}{\overset{H}}{\underset{H}}{\underset{H}}}{\overset{H}}{\underset{H}}{\underset{H}}}{\overset{H}}{\underset{H}}{\underset{H}}{\underset{H}}}{\overset{H}}{\underset{H}}}{\overset{H}}{\underset{H}}{\underset{H}}}{\overset{H}}{\underset{H}}}{\overset{H}}{\underset{H}}}{\overset{H}}{\underset{H}}}{\overset{H}}{\underset{H}}}{\overset{H}}{\underset{H}}}{\overset{H}}{\underset{H}}}{\overset{H}}{\underset{H}}}{\overset{H}}{\underset{H}}}{\overset{H}}{\underset{H}}}{\overset{H}}{\underset{H}}}{\overset{H}}{\underset{H}}}{\overset{H}}{\underset{H}}}{\overset{H}}{\underset{H}}}{\overset{H}}{\underset{H}}}{\overset{H}}{\underset{H}}}{\overset{H}}}{\overset{H}}{\underset{H}}}{\overset{H}}}{\overset{H}}{\underset{H}}}{\overset{H}}}{\overset{H}}{\underset{H}}}{\overset{H}}}{\overset{H}}}{\overset{H}}}{\overset{H}}{\overset{H}}}{H$	0.83	0.74
DeM No. 16	159.85	$\overset{HO}{\underset{O}{\overset{NH_2}{\leftarrow}H_3}} \overset{O}{\underset{CH_3}{\overset{HO}{\leftarrow}H_2}} \overset{O}{\underset{H_2}{\overset{O}{\leftarrow}H_2}} \overset{O}{\underset{H_2}{\overset{O}{\leftarrow}H_3}}$	1.41	0.55

Table	3.	Continued
1 unic	J.	Continueu

Compound	TPSA (Å ²)	Chemical structure	R _{M,0} (det. calc. 0%)	logP (calc.)
DeM No. 17	159.85	$\overset{HO}{\longleftarrow} \overset{HH_2}{\longrightarrow} \overset{H}{\underset{O}{\overset{H}{\longrightarrow}}} \overset{O}{\underset{CH_3}{\overset{H}{\overset{H}{\longrightarrow}}}} \overset{O}{\underset{O}{\overset{O}{\overset{O}{\overset{H}{\longrightarrow}}}}} \overset{O}{\underset{CH_3}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{$	3.13	1.69
DeM No. 18	152.62	$\overset{HO}{\underset{O}{}} \overset{HP_2}{\underset{O}{}} \overset{H}{\underset{CH_3}{}} \overset{H}{\underset{O}{}} \overset{H}{\underset{O}{\overset{H}{}} \overset{H}{\underset{O}{}} \overset{H}{\underset{O}{\overset{H}{}} \overset{H}{\underset{O}{\overset{H}{}} \overset{H}{\underset{O}{\overset{H}{}} \overset{H}{\underset{O}{\overset{H}{}}} \overset{H}{\underset{O}{\overset{H}{\overset{H}{}} \overset{H}{\underset{O}{\overset{H}{\overset{H}{}}} \overset{H}{\underset{O}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset$	1.15	0.10
DeM No. 19	150.62	$\overset{HO}{\underset{O}{}} \overset{HP_2}{\underset{CH_3}{}} \overset{H}{\underset{O}{}} \overset{O}{\underset{CH_3}{}} \overset{H}{\underset{O}{}} \overset{H}{\underset{O}{\overset{H}{}} \overset{H}{\underset{O}{\overset{H}{}} \overset{H}{\underset{O}{\overset{H}{}} \overset{H}{\underset{O}{\overset{H}{}} \overset{H}{\underset{O}{\overset{H}{}} \overset{H}{\underset{O}{\overset{H}{\overset{H}{}}} \overset{H}{\underset{O}{\overset{H}{\overset{H}{}} \overset{H}{\underset{O}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset$	3.15	2.25
DeM No. 20	162.65	$\overset{HO}{\underset{O}{}} \overset{HO}{\underset{CH_3}{}} \overset{HO}{\underset{O}{}} \overset{HO}{\underset{O}{\overset{HO}{}} \overset{HO}{\overset{HO}{}} \overset{HO}{\underset{O}{\overset{HO}{}} \overset{HO}{\overset{HO}{}} \overset{HO}{\overset{HO}{} \overset{HO}{} \overset{HO}{\overset{HO}{}} \overset{HO}{\overset{HO}{\overset{HO}{\overset{HO}{}} \overset{HO}{\overset{HO}{\overset{HO}{\overset{HO}{\overset{HO}{\overset{HO}{\overset{HO}{}}} \overset{HO}{\overset{HO}$	4.06	2.21
DeM No. 21	158.82	$\overset{HO}{\underset{O}{\overset{HO}{\underset{CH_3}{\overset{HO}{\underset{O}{\overset{HO}{\underset{O}{\overset{HO}{\underset{CH_3}{\overset{HO}{\underset{O}{\overset{HO}{\overset{HO}{\underset{O}{\overset{HO}{\overset{HO}{\underset{O}{\overset{HO}{\overset{HO}{\underset{O}{\overset{HO}{\overset{HO}{\underset{O}{\overset{HO}{\overset{HO}{\overset{HO}{\overset{HO}{\overset{HO}{\underset{O}{\overset{HO}{HO}{\overset{H}{H$	0.86	0.10
DeM No. 22	147.82	$\overset{HO}{}\overset{HH_2}{}\overset{H}{}\overset{O}{}\overset{H}{}\overset{O}{}\overset{H}{}\overset{H}{}\overset{O}{}\overset{O}{}\overset{H}{}\overset{H}{}\overset{O}{}\overset{O}{}\overset{O}{}\overset{O}{}\overset{H}{}\overset{H}{}\overset{O}{}\overset{O}{}\overset{O}{}\overset{O}{}\overset{H}{}\overset{H}{}\overset{O}{}\overset{O}{}\overset{O}{}\overset{H}{}\overset{H}{}\overset{O}{}\overset{O}{}\overset{O}{}\overset{H}{}\overset{H}{}\overset{O}{}\overset{O}{}\overset{O}{}\overset{H}{}\overset{H}{}\overset{O}{}\overset{O}{}\overset{O}{}\overset{H}{}\overset{H}{}\overset{O}{}\overset{O}{}\overset{H}{}\overset{H}{}\overset{H}{}\overset{O}{}\overset{H}{}}\overset{H}{}\overset{H}{}}$	1.91	1.02
DeM No. 23	147.82	$HO_{1} \xrightarrow{NH_{2}} H \xrightarrow{O}_{1} \xrightarrow{H}_{1} \xrightarrow{H}_{1} \xrightarrow{H}_{2} \xrightarrow{H}_{2} \xrightarrow{O}_{1} $	3.09	1.87

Table 3. Continued

thin-layer chromatography was applied when polar organic compounds were determined. Hydrophilicity was determined in this latter case when the compounds did not show any mobility using reversed-phase plates.

The *in silico* method is applied for the calculation of logP based on the functional groups of organic compounds. Several computer based methods are known; however, they are mainly restricted to handle the

Figure 3. R_{M,0} versus logP relations for dermorphine derivatives.

Table 4. Chemical structure, $R_{M,0}$ (R_M values were determined, then approximated to $R_{M,0}$) and calculated logPs of certain selected pyridinium aldoximes

Name	Chemical structure	$R_{M,o}$	logP (combined)
Pralidoxime	H C N C N C H ₃ OH	0.513	-2.56
Obidoxime	$\overset{CI^{-}}{\underset{CI^{-}}{\overset{N^{+}}{\underset{CI^{-}}{\overset{N^{+}}{\underset{CI^{-}}{\overset{N^{+}}{\underset{CI^{-}}{\overset{N^{+}}{\underset{CI^{-}}{\overset{N^{+}}{\underset{CI^{-}}{\overset{N^{+}}{\underset{CI^{-}}{\overset{N^{+}}{\underset{N^{+}}{\overset{N^{+}}{\underset{N^{+}}{\overset{N^{+}}{\underset{N^{+}}{\overset{N^{+}}{\underset{N^{+}}{\overset{N^{+}}{\underset{N^{+}}{\overset{N^{+}}{\underset{N^{+}}{\overset{N^{+}}{\underset{N^{+}}{\overset{N^{+}}{\underset{N^{+}}{\overset{N^{+}}{\underset{N^{+}}{\overset{N^{+}}{\underset{N^{+}}{\overset{N^{+}}{\underset{N^{+}}{\overset{N^{+}}{\underset{N^{+}}{\overset{N^{+}}{\underset{N^{+}}{\overset{N^{+}}{\underset{N^{+}}{\overset{N^{+}}{\underset{N^{+}}{\overset{N^{+}}{\underset{N^{+}}{\overset{N^{+}}{\underset{N}^{+}}{\underset{N}^{+}}{\underset{N}^{+}}{\underset{N}^{+}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}$	0.953	-2.87
K-27	HONN NH2 Br Br Br	0.918	-2.84
K-48	HO ^{-N} HO ^N	1.04	-2.79

Figure 4. R_{M,0} versus logP relations for pyridinium aldoximes.

logP of non-ionized organic compounds. Our calculations were done using the Pallas program of CompuDrug Ltd.,^[26] which is able to handle all organic molecular fragments and neglects charge. Substitution by halogen is not considered to influence the polar surface, neither in the polar surface area (TPSA) nor in the calculated logP values.^[26–28]

CONCLUSIONS

Correlations between the results of experimental determinations (RP-TLC-silica) and computer assisted calculations (*in silico*) indicate acceptability of both methods to such an extent that lipophilicity can be considered to bear definitive biological and pharmacological behaviour. The validity of our conclusions applies to the same group of organic compounds, while other ring systems, odd rings, and quaternary amines alter the results, especially the value of polar surface area. Further experiments and calculations will be needed to establish the hydrophilicity versus logP relationship.

ACKNOWLEDGMENTS

This project was sponsored by the T049492 grant of National Research Fund (OTKA), Budapest, Hungary. Thanks are due to Dr. K. Kuca for supplying the K-compounds, Dr. F. Darvas and CompuDrug International, Inc. for making the use of their softwares possible. Advices of Mr. J. Horváth and Dr. T. Csermely are appreciated.

REFERENCES

- Kalant, H.; Woodland, C.; Seeman, P. Drug solubility, absorption, and movement across body membranes, in *Principles of Medical Pharmacology*, 7th Ed.; Kalant, H., Grant, D.M., Mitchell, J., Eds.; Elsevier: Canada, Toronto, 2007, 11–26.
- Overton, E. Über die osmotische Eigenschaften der Zelle in ihrer Bedeutung für die Toxicologie und Pharmacologie. Z. Physical. Chem. 1897, 22, 189.
- 3. Overton, E. Studien über die Narkose; G. Fischer Verlag: Jena, 1901.
- 4. Meyer, H. Zur Theorie der Alkoholnarkose. Erste Mitteilung. Welche Eigenschaft der Anasthetica bedingt ihre narkotische Wirkung? Arch. Exptl. Pathol. Pharmakol. **1899**, *42*, 109.
- Meyer, H., Zur Theorie der Alkoholnarkose. Dritte Mitteilung. Der Einfluss wechselnder Temperatur auf Wirkungstarke und Teilungscoefficient der Narkotica. Arch. Exptl. Pathol. Pharmakol. 1901, 46, 338.
- Baum, F. Zur Theorie der Alkoholnarkose, Zweite Mitteilung. Ein physikalisch-chemisher Beitrag zur Theorie der Narkotica. Arch. Exptl. Pathol. Pharmakol. 1899, 42, 119.
- Ferguson, J. The use of chemical potentials as indices of toxicity. Proc. Royal Soc., Ser. B. 1939, 127, 787.
- 8. Collander, R. The partition of organic compounds between higher alcohols and water. Acta Chem. Scand. **1951**, *5*, 774.
- 9. Collander, R. The permeability of Nitella cells to non-electrolites. Physiol. Plant. **1954**, 7, 420.
- Zahradnik, R. Influence of the structure of aliphatic substituents of the magnitude of the biological effect of substances. Arch. Int. Pharmacodyn. Ther. 1962, 135, 311.
- 11. Hemker, H.C. Lipid solubility as a factor influencing the activity of uncoupling phenols. Biochim. Biophys. Acta. **1962**, *63*, 46.
- Leo, A.J.; Hansch, C.; Elkins, D. Partition coefficients and their uses. Chem. Rev. 1971, 71, 525.
- 13. Hansch, C.; Leo, A.J. Substituent Constants for Correlation Analysis in Chemistry and Biology; Wiley: New York, 1979.
- Biagi, G.L.; Barbaro, A.M.; Guerra, M.C.; Cantelli Forte, G.; Borea, P.A.; Pietrogrande, M.C.; Salvadori, S.; Tomatis, R. In *Chromatography, the State of the Art*; Kalász, H.; Ettre, L.S., Eds.; Akadémiai Kiadó: Budapest, 1985; 719–730.
- Nahum, A.; Horváth, Cs. Evaluation of octanol-water partition coefficient by using high-performance liquid chromatography. J. Chromatogr. 1980, 192, 315–322.
- Valkó, K.; Plass, M.; Bevan, C.; Reynolds, D.; Abraham, M.H. Relationships between the chromatographic hydrophobicilty indices and solute descriptors obtained by using several reversed-phase, diol, nitrile, cyclodextrin and immobilized artificial membrane bonded high-performance liquid chromatography columns. J. Chromatogr. A. 1988, 797, 41–55.
- Boyce, C.B.C.; Milborrow, B.V. A simple assessment of partition data for correlating structure and biological activity using thin-layer chromatography. Nature. 1965, 208, 537.

- Biagi, G.L.; Barbaro, A.M.; Gamba, M.F.; Guerra, M.C. Partition data of penicillins determined by means of reversed-phase thin-layer chromatography. J. Chromatogr. 1983, 259, 329.
- Biagi, G.L.; Guerra, M.C.; Barbaro, A.M.; Sapone, A.; Recanatini, M. Lipophilic character of cardiac glycosides: correlation between RM values and acute toxicity data in different animal species. J. Chromatogr. 1991, 547, 523–530.
- Kalász, H.; Báthori, M.; Csermely, T. Planar versus microcolumn chromatography. Am. Lab. 2000, 32 (9), 28–32.
- Csermely, T.; Kalász, H.; Rischák, K.; Báthori, M.; Tarjányi, Zs.; Fürst, S. Planar chromatography of (-)-deprenyl and some structurally related compounds. JPC-J. Planar Chromatogr. 1998, 11, 247–253.
- Laufer, R.; Báthori, M.; Csermely, T.; Petroianu, G.; Kuca, K.; Tóth, N.; Kalász, H. TLC determination of hydrophilicity parameter of some pyridinium aldoximes. J. Liq. Chromatogr. & Rel. Technol. 2004, 30, 2337–2344.
- Báthori, M. Purification and characterization of plant ecdysteroids of Silene otites. Trends Anal. Chem. 1998, 17, 372–383.
- Báthori, M. Phytoecdysteroids effects on mammalian, isolation and analysis. Mini Rev. Med. Chem. 2002, 2, 285–293.
- Báthori, M.; Hunyadi, J.; Janicsák, G.; Máthé, I. TLC of ecdysteroids with four-mobile phases and three-stationary phases. J. Planar Chromatogr. 2004, 17, 23–25.
- The Pallas and the PrologP are softwares of CompuDrug International, Inc. (115 Morgan Drive, Sedona, AZ 86351, USA).
- Molnár, L.; Keserü, Gy.; Papp, Á.; Gulyás, Zs.; Darvas, F. A neural network based prediction of octanol-water partition coefficients using atomic 5 fragmental descriptors. Bioorg. Med. Chem. Lett. 2004, 14, 851–853.
- Ertl, P.; Rohde, B.; Selzer, P. Fast calculation of molecular polar surface area as a sum of fragment based contributions and its application to the prediction of drug transport properties. J. Med. Chem. 2000, 43, 3714–3717.

Received December 22, 2008 Accepted January 9, 2009 Manuscript 6469E